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Abstract 
Evidence-based medicine (EBM) claims to provide gold-standard methods based on group and population statistics. 
However, the main issues in clinical medicine concern classification and prediction. During diagnosis, a patient’s illness is 
classified; then it is predicted that a specific treatment will be successful with that particular patient. Most scientific 
disciplines concerned with classification and prediction have rejected group and population statistics as being misleading, 
inadequate and inaccurate for such applications. This paper lists some of the critical findings from the decision sciences that 
bring the utility, application and validity of EBM into question. One of the foundations of EBM is that large clinical trials 
provide the best evidence. However, EBM misapplies the law of large numbers and best evidence really means selected 
data. EBM is inconsistent with modern science, theoretically unsound, impractical and erroneous in its application. 
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Introduction 
 

Most physicians agree that randomised controlled trials are 
considered a gold standard, but interpretation of the term 
evidence-based medicine (EBM) differs [1]. EBM is 
medicine based on aggregate statistical results from large 
clinical trials. Recently, however, a series of technical 
challenges to the validity of EBM have emerged. The 
challenges include philosophical, statistical and practical 
issues. Hickey and Roberts [2] suggest that EBM does not 
conform to the requirements of good science, rational 
decision making or information theory. This paper explains 
some key elements of these limitations and a detailed 
account of misinterpretation of statistics, particularly those 
from large clinical trials. 

We take the concept of a rational doctor-patient 
combination as axiomatic [2]. Informed choice is based on 
the premise that medical decisions should be rational, as to 
suggest that such decisions be irrational would be absurd. 
In order for a patient to make a rational decision, the 
doctor needs to present unbiased information and have the 
authority to use suitable treatments [3]. Ross Ashby, the 
psychiatrist and cybernetician, provided a concise 
description of rational decision-making: use what you 
know to narrow the field as far as possible and after that do 

as you please [4]. Thus, a requirement for rational patient 
choice is that the patient and doctor have the knowledge, 
ability and freedom to consider the data. 

Medicine increasingly relies on group statistics from 
clinical trials as a guide to treatment. This is exemplified in 
the use of evidence-based medicine and its use as a guide 
for the treatment of individual patients. The nominal 
guidelines for EBM allow for the inclusion of a doctor’s 
expertise and a patient’s unique circumstances when 
making statistical evidence-based decisions about patients 
[5]. The introduction of EBM has occurred along with an 
increase in the size of published clinical trials and the use 
of systematic reviews to enlarge the population considered. 
Bland found that in 1972 the median size of trials in the 
Lancet and British Medical Journal (BMJ) were 33 and 37 
subjects respectively [6]. For the same month in 2007, 35 
years later, the corresponding figures for the Lancet and 
BMJ were 3,116 and 3,104 subjects, respectively. This 
increase of almost 2 orders of magnitude corresponds to a 
widespread belief that larger trials provide more reliable 
evidence. The law of large numbers states that the 
precision of estimates of the mean value increases with 
escalating sample size [7,8]. The EBM paradigm is built 
around application of the law of large numbers and group 
statistics in clinical trials. 
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Despite claims that EBM introduces more scientific 
methods into medicine, it remains controversial. Here we 
describe some critical issues with the use of EBM for the 
treatment of patients. We show that the use of the law of 
large numbers to suggest benefits for large clinical trials 
can be misleading. Furthermore, we explain how most 
quantitative scientific disciplines, involved with 
classification and prediction, have rejected group statistics. 
Importantly, day-to-day practical medicine, such as finding 
a diagnosis and selecting a suitable treatment for a patient, 
falls into the category of classification and prediction. 

Populations or people? 

The analytic divergence of populations and individuals has 
been generally recognised. Aggregate statistics such as the 
mean and standard deviation describe the normal and 
similar distributions, but model the population not the 
individual data points. In economics, Friedrich Hayek 
described how the flow of information needed to pass from 
the individuals to the controllers [9]. Aggregate statistics 
do not provide the fine grained data resolution required for 
economic analysis. Correspondingly, economic modelling 
often works on the principle of emergence from 
independent, autonomous, intelligent agents [10]. Similar 
wisdom of crowd concepts provide the foundation of 
numerous disciplines including evolution [11], complexity 
theory [12], physics of systems [13], swarm intelligence 
[14], prediction markets [15], Delphi methods [16], crowd 
simulation [17] and computer graphic simulation [18]. A 
key feature of this approach is the emergence of order out 
of complexity that highlights the potential deficiencies of 
the linear statistics used in EBM and by related 
organisations [19]. 

Starting with cybernetics [20], a number of disciplines 
have addressed the inappropriate use of group statistics for 
individual prediction. Pattern recognition [21], machine 
intelligence [22], computer vision [23], neuroscience [24], 
artificial intelligence [25], induction systems [26], 
computational intelligence [27] and related disciplines that 
are explicitly concerned with classification and prediction 
generally do not depend on group statistics. It is an 
accepted finding that group statistics are not accurate or 
reliable, in individual prediction or classification. Group 
statistics describe or are used to analyse population data, or 
samples, but are not directly applicable to individuals. 

Population and group statistics used in EBM can be 
viewed as a method of data compression [28] providing 
aggregate population data and sample estimates. However, 
this data compression is ‘lossy’, dropping information 
about the individual datum. The induced information loss 
means collective statistics describing the normal and 
similar distributions are computationally efficient. Notably, 
the primary statistical methods employed in EBM were 
developed in the pre-computer society. Least squares arose 
from Legendre and Gauss starting in the early 1800s [29], 
meta-analysis by Pearson in 1904 [30], Students t-test in 
1908 [31], Fisher’s F-ratio in the 1920s [32], analysis of 
variance in the 1930s and so on. However, it is now 

possible to process large datasets and make specific 
predictions for individual people. In the world of decision 
science, EBM methods appear increasingly old and 
antiquated. 

These issues are often described with reference to the 
ecological fallacy, also called the fallacy of division, which 
states that you should not apply population statistics to the 
individual [33]. Classically, you can determine the mean 
shoe size with a little arithmetic; but do not give everyone 
the average shoe, because most will be disappointed with 
the fit. The ecological fallacy is related to the fallacies of 
composition and division; what is true of a sample is not 
necessarily true of the whole and, conversely, findings 
from the whole do not necessarily describe the sample 
[34]. Group statistics do not apply to an individual patient, 
in the same way as an EBM statistician would not make a 
prediction for the whole population from a single case 
report.  

Rational patient expectations 

We take a rational patient and a rational doctor to be the 
primary decision centre. A rational patient has an 
expectation that the treatment received has a reasonable 
probability of providing him or her with overall benefit. 
Correspondingly, a rational doctor would provide only 
those treatments with a reasonable probability of benefiting 
the patient. At a minimum, the expected gain should 
exceed the risk of harm. Similarly, game theory, 
economics and related disciplines, suggest that a rational 
patient would not accept risk of side effects, or other harm, 
with no dominating expected benefit [35]. We exclude 
from the analysis the special case of medical altruism, 
where a patient might undergo the risk of treatment to 
provide benefit for others. 

A reasonable probability that a treatment is successful 
is somewhat vague. Moreover, risk is defined as cost (or 
benefit) multiplied by probability. To be definite, we 
suggest a rational patient might expect to receive the most 
effective treatment for a typical illness and have a sizable 
chance of benefiting from it. The critical values vary with 
the patient, illness and specific conditions and may be 
modelled by the probability of the individual’s successful 
treatment, ps. This probability of successful treatment is 
often approximated in clinical trials using the number 
needed to treat (NNT). 

The first law of cybernetics 

It is an axiom of EBM that well-designed, large-scale, 
placebo-controlled, randomised, clinical trials (RCTs) 
provide the best data for treating patients. This assumption 
is based on the statistical techniques employed and has not 
been tested against the competing methodologies [2]. Nor 
has it been adequately explained how RCTs avoid the 
ecological fallacy. 

The ecological fallacy is a direct consequence of 
Ashby’s law of requisite variety also known as the first law 
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of cybernetics. Ashby’s requisite variety provides a 
minimum limit to the information required to solve, or 
even fully describe, a problem [36]. This is a general 
finding, in information theory, for example, Shannon’s 10th 
theorem is considered a special case of Ashby’s law [37]. 
An effective solution needs an equal amount of 
information, or variety, to the problem itself. If there is 
insufficient information, the solution will be ineffective. 
Ashby gave the example of a bacterial infection. A person 
must have a sufficient number of varied antibodies to 
protect against the array of possible invading organisms 
[38]. To demonstrate the validity of EBM, it is a minimum 
requirement that, despite the inherent data compression, 
RCT statistics conform to Ashby’s law when applied to the 
individual patient. 

Good regulator theorem 

While Ashby’s law has widespread acceptance, there is a 
secondary restriction on the regulation of systems. Ashby 
and his student Roger Conant provided the good regulator 
theorem [39]. An effective solution, or medical treatment, 
needs to be a specific model of the problem. To extend 
Ashby’s infection example, the patient must have an 
effective antibody that explicitly and selectively pattern 
matches the invading organism. That is the shape and 
structure of the antibody’s active site is a close match, or 
model, of part of a bacterial protein but does not fit the 
host proteins. Note, prediction and classification are 
implied in this process of pattern recognition. Similarly, an 
enzyme’s active site matches the substrate molecule as the 
acetabulum models the head of femur [40]. 

Current large clinical trials are often based on a 
multivariate risk factor model. Diseases are assumed to be 
complex and are addressed by determining the associated 
risk factors and their linearly independent contributions or 
correlations. This has been found universally in other 
disciplines to invite the curse of dimensionality which 
degrades the utility of the analysis [41,42]. Corresponding 
to Ashby’s law and the good regulator theorem, practical 
systems have an intrinsic dimensionality, a maximum 
number of independent factors required for full 
description. Moreover, the solution must be isomorphic 
with the system being regulated [39]. The curse of 
dimensionality is often described mathematically in terms 
of an exponentially increasing segmentation of higher 
dimensional spaces [43], or the introduction of high 
dimensional random noise which cannot be separated from 
the embedded information [2]. 

For medical decisions we require Goldilocks solutions 
that are not too simple, do not contain too many risk 
factors and are not over complicated [2]. Good regulators 
are models that map onto the intrinsic dimensionality and 
thus there are a specific and usually small number of 
factors required for a practical solution. Large trials and 
related solutions can be over-determined. The inherent 
danger is that over-determined models over-fit the data 
[44], producing deceptively accurate results which fail 
when used for real world classification and prediction. 

 
Unfortunately, the multiple risk factor model of a 

disease in statistical medicine forms an adaptive system 
[45,46]. As a result, scientific refutation of such adaptive 
models may be impractical within the EBM framework; 
multiple risk factor models simply adjust to incorporate 
new data. The classic case of external refutation is the 
direct experimentation by Marshall and Warren showing 
peptic ulcers to result from Helicobacter pylori infection 
[47]. With ulcers, direct experiment provided a good 
regulator model comprising a parsimonious solution and an 
effective treatment, which dominated the earlier risk factor 
explanations. There are many other examples of over-
complicated risk factors descriptions from the history of 
medicine being replaced by the germ theory of disease; 
mycobacteria as the cause of tuberculosis is a specific case 
[2]. 

Good model making is compulsory rather than 
optional [39]. With certain minimal restrictions, any 
attempt to find or validate a new treatment needs to model 
the clinical situation. The clinical target is a rational patient 
and his or her doctor. For medicine, the system is based on 
specific doctor-patient decision-making and the unique 
circumstances and biology of the individual patient and the 
disease. The good regulator theorem implies that to be 
effective the methods employed in clinical science must 
model discrete decision-making in the individual patient-
doctor system. A form of pattern recognition is the implied 
approach. Group statistics emerge from the analysis, but 
are not good regulators. 

Probability of successful treatment 

We can use the binomial distribution to model a series of 
independent, individual, clinical trial experiments. Here, 
the experiment is the treatment of a single patient. The 
group mean, ms, is the probability of successful treatment, 
ps, multiplied by the number of trials or patients, n, that is: 
 

ms = nps   (1) 
 
the variance, 𝜎2, is given by 
 
σs2 = nps(1 − ps)  (2) 
 

The binomial distribution is closely related to the 
normal distribution which is often used as an 
approximation to it, with a minor continuity correction 
[48]. The normal approximation increases in accuracy with 
n but decreases with more extreme values of ps, that is, 
probabilities close to 0 or 1. This approximation is robust 
and a minimum heuristic for the approximation to be 
useful is n>5 [49]. Larger values of n (>20) are normally 
considered adequate depending on the application. The 
primary limitation with the binomial distribution is that we 
are dealing with a binary (e.g., sick, healthy) criterion. 
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Clinical trials 

Standard EBM clinical trials typically are built around the 
assumption of normality and tests of the difference 
between mean values. Here, we use the normal distribution 
and the corresponding z-test of the difference between 
means, as an exemplar of a statistical test in a clinical trial: 

 
z = (m − µ)/s   (3) 

 
where m is the sample mean and μ the population mean. 
The standard error, SE, is σ/√n where σ2 is the variance. 
The use of the normal distribution and z-test as exemplar is 
not a critical assumption for the discussion; however, it 
facilitates a definite and straightforward explanation. 

In the z-test, we have 2 samples one controls and the 
other treated patients, which we can approximate using the 
binomial distribution, with sample means: 
 

mt = ntpts and mc = ncpcs (4) 
 

and sample variances, s2, 
 

st2 = ntpts(1 − pts) and sc2 = ncpcs(1 − Pcs) (5) 
      

where the subscripts t and c indicate treated and controls 
respectively and subscript s is a reminder that we are 
dealing with the probability of successful treatment. 
Substituting equations 4 and 5 into equation 3 and 
combining the sample variances gives: 
 
z = ntpts − ncpcs/√[ntpts(1 − pts)/nt + ncpcs(1 − pcs)/nc] 
 
For simplicity, assume the samples have equal size, 
n=nt=nc, then: 

 
z = n(pts − pcs)/√[pts(1 − pts) + pcs(1 − pcs )] (6) 

 
The value of z is thus proportional to the sample size n 

and a term containing pts and pcs. However, the value of the 
(pts, pcs) term is constrained for practical values. This 
constraint is the case except where pts approaches 1 while 
pcs approaches 0, or conversely pcs approaches 1 but pts 
approaches 0, as shown graphically in Figure 1. These 
extreme conditions apply when a treatment gives near 
perfect results in an otherwise hopeless disease or almost 
all untreated patients recover while the treatment causes 
disease continuation in effectively all patients. Such 
conditions are clinically rare. 

We should be clear about the meaning. We have 
specified the z-test in terms of the probability that an 
individual patient will benefit from the treatment, pts, 
compared with being untreated, pcs. These probabilities are 
not the p-values normally quoted in clinical trials, which 
relate to the difference between the groups and are often 
obtained from the value of z using statistical tables. This 
measure of the treatment benefiting the individual patient 
(pts-ptc) is related to the aggregate effect size. Equation 6 
tells a rational patient that the z-test value for the normal 

distribution is proportional to and dominated by, the 
sample size, n.  

 
Figure 1 The term (pts-pcs)/√[pts(1-pts)+pcs(1-pcs)] 
is shown for the values of ptc and pcs between 0 
and 1. The range of the computed values shown 
is ±4.9. 

 
 
A rational patient is concerned with the chance that the 

treatment will work. A clinical study with large n, can 
obscure the probability difference (pts-pcs). Thus, there is a 
danger that statistical testing of the difference between 
groups may represent the size of the study, rather than the 
ability to predict the benefit for a patient. 

 
Figure 2 The linear relationship between the 
square root of the study size, √n and the 
calculated z-value is shown. This established 
relationship arises from the law of large 
numbers. 
 

Normal probabilities 

Here, we describe the probability of group difference, the 
p-value. The variation of z-value is linearly proportional to 
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√n and this well established relationship is shown in Figure 
2. This linear relationship with √n arises from the 
reduction in the standard error on the mean, SE=σ/√n, in 
equation 3 and is the basis of claims for increased 
precision in large trials. We reproduce this chart for direct 
visual contrast to the rapid decay of the corresponding p-
values. The variation of the group probability (p-value) 
with the z-value is non-linear, as shown in Figure 3. The 
decline in p-value with increasing z-value is fast. That is 
the decay in p-value is far more rapid and in practice 
dominates the linear increase in z-value or the 
corresponding linear decrease in standard error. 
 
Figure 3 The variation of p-value with the value 
of the z-test is shown. These are standard 
tabular results displayed graphically to 
illustrate the rapid decline in derived probability 
with increasing z. 
 

 
Thus, the effects of the increase in precision with 

increasing n may be misunderstood. The corresponding 
increase in the z-value (and decrease in standard error) 
with study size provides benefit only if there is a large 
(dominating) correction to the acceptable p-value 
(confidence limit). The variation in p-value with √n shown 
in Figure 4. For this figure, we assumed fixed difference 
between means (1) and constant variance (10). This 
assumption is used merely to facilitate graphical 
representation and other values produce similar results. To 
clarify, p<0.05 in the year 1975 (with median n about 30) 
is not the same as p<0.05 in 2007 (with median n>3,000). 
In effect, the rules have changed. 

Recent successful trials would be rejected had the 
criterion for acceptance not changed. The introduction of 
EBM has weakened statistical requirements for clinical 
trials. It is immediately apparent, from Figure 4, that a 
rapid non-linear decrease in the computed probability 
accompanies an increase in study size. Importantly, this 
rapid non-linear decline in p-value dominates the linear 
relationship shown in Figure 2 for moderate values of n. 
Consequently, the p-value is a decreasing measure of a 
rational patients expected benefit (pts-pcs in Equation 6) as 
the study size increases. In practical terms, for the same p-
value a larger study is less useful as a predictor of a useful 
treatment. This finding contradicts the conventional 
supposition of an increased utility of large clinical trials, 

which arises from the law of large numbers and its effect 
on reducing the standard error. 
 
Figure 4 This figure shows the non-linear 
decline in p-value with (the square root of) 
study size. This rapid decline dominates the 
linear increase in standard error (Figure 3). 

 

 

Simulation method 

We ran Monte-Carlo simulations in Java using the fast 
FastMersenne Twister algorithm based on version 
MT199937 of the algorithm for raw pseudorandom number 
generation [50] using a standard Java pseudorandom seed. 
These numbers were employed to produce a series of 
binary strings to represent positive (return to health) and 
negative (remain sick) outcomes in a clinical trial. The 
results naturally form a binomial distribution. The 
binomial distribution was used as a model of the normal 
distribution, the inverse of the common functional 
mapping. Then the z-value was calculated from the 
computed sample means and variances. Finally, the normal 
probability was computed from the z-value using a 
standard numerical integration method implemented in 
Java [51]. 

For most runs, we used a standard sample size of 100 
patients for ease of representation as percentage treatment 
success and averaged over up to 1,000,000 experimental 
repeats for consistency. We varied the sample size from 10 
to 10,000 patients in trial experiments. For investigative 
simulation, we employed trial runs of 10,000 experimental 
repeats and these are the results displayed here. 

Results of simulation 

Typical simulation results for the relationship between the 
probability of successful treatment and the group p-value 
for a study size of 50, 100 and 200 controls and equal 
number of treated patients are shown in Figure 5. This 
figure assumes that half the patients will recover naturally, 
pcs=0.5. Note that Figure 5 indicates that a 5% significance 
(p = 0.05) corresponds to a marginally effective  benefit  to 
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Figure 5 Results of Monte-Carlo simulation of the percentage significance (or p-value) in terms of the 
probability of patient benefit, pts. A value for pts of 0.55 means that a patient has a 1 in 20 chance of 
benefit. The curves represent study sizes of 50 (black line), 100 (dark grey line), and 200 (light grey 
line). 
 

 
 
 
an individual patient that decreases with increasing study 
size. 

From Figure 5, a treatment only needs to help 3 
patients in 100 (NNT≈33) on average to be significant with 
n=50. Moreover, a highly significant group probability 
(p<0.01) corresponds to helping an average of about 5 
patients in 100 (NNT≈20) with this small sample size. 
Very high significance (p<0.001) occurs when about 8% of 
patients receive benefit (and NNT≈12). Taking a sample 
size of 200, p<0.05, p<0.01 and p<0.001 all occur when a 
rational individual’s expectation of benefit is 
approximately 1%. Large trials are not simply bigger 
versions of small studies. The results of Monte Carlo 
simulation support the contention that, for rational patients, 
the results of large significant trials are less important than 
the findings of smaller studies. 

Selection of data 

A central claim of EBM is its use of the best evidence. The 
best evidence is selected according to varied rules based 
around the assumed gold standard of large-scale placebo-
controlled randomised clinical trials. However, all 
selection other than random choice is based on 
information. Use of the best evidence implies knowledge 
of the underlying reality and cannot be based on a 
statistical or other methodology. Selection bias results 
from non-random selection of data [52]. The inadvisability 
of such selection was known to the Greek philosophers, 
notably Epicurus. 

EBM’s scientific consistency is superficial and the 
approach is technically inadequate. Use of the best 
evidence implies EBM is a local rather than global search 
strategy [53]. The implication is that EBM has a limited 
application, specifically to social medicine. We note that 
EBM has been criticised for positivism in that it emphases 
verification and observation, but is less strong in terms of 
explanation [54]. A good inductive system is one that 
approximates to Solomonoff Induction [55] in that it uses 
all available data and updates current beliefs with 
additional information [56]. Science is a practical example 
of such induction [2,57]. A general rule in science is that it 
is invalid to preferentially select “good” data, for example, 
outliers are not removed when plotting a graph [58]. The 
data selection in EBM’s use of the “best evidence” is 
inconsistent with the scientific method and with a good 
inductive system. 

Meta-analysis is a form of systematic review in which 
data is non-randomly selected from the literature and 
combined using linear statistics. Some EBM organisations 
recognise meta-analysis as the ultimate form of evidence 
[59,60]. We examined series of meta-analyses in both the 
Cochrane database and the Journal of the American 
Medical Association (JAMA) and every review inspected 
contained major statistical and methodological errors [61]. 

In JAMA, we examined 38 papers containing the term 
meta-analysis in the title or abstract, published in the years 
2005-2006, but not one was statistically sound. The 
reviewers were free to select the studies. Narrative fallacy 
could have explained biased selection events after they 
have occurred [62]. The reviewers had information about 

0

10

20

30

40

50

60

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59

Si
gn

ifi
ca

nc
e 

%
 

Probability of Successful Treatment 



European Journal for Person Centered Healthcare 
 
 
 

75 

the results of the clinical trials they were choosing. Eight 
of the 38 published reviews were not actually meta-
analyses. One of the reviews of observational studies had 
poor blinding in study selection, but included all 
reasonable studies [63]. A second review of refugees had 
some blind data extraction, but studies were openly 
selected [64]. The other 28 reviews selected their clinical 
trials with no blinding. 

In total, 30 out of 30 JAMA meta-analyses were 
subjective, with potentially biased study selection. The 
authors of the reviews and the people selecting the data 
had access to the names of the original study authors, the 
full text of the studies and the study results. Of the meta-
analyses, 6 did not select independently and 4 did not make 
the selection method clear. The selection involved 
“independent” researchers in the remaining 19 reviews. 
However, it was not clear in what way they were 
considered independent. People who know the data cannot 
be expected to provide an independent selection. 

Selection bias dominated the meta-analyses. In the 
JAMA reviews, almost all the available data were 
excluded. Of 39,894 studies, only 962 (2.4%) were 
included, while the remaining 38,932 studies were ignored. 
The reviewers handpicked particular study authors and 
contacted them, to provide additional information. In half 
(15/30) of the reviews, there was communication with 
study authors. However, in only 3 cases was it declared 
that authors or representatives from all the studies were 
contacted. The reviewers obtained non-peer reviewed data 
for chosen studies of particular interest. 

Fourteen JAMA reviews used additional unpublished 
or non-reviewed data. The reviewers apparently found it 
appropriate to ask selected scientists for additional 
unpublished information. Six included unspecified data 
that could not be independently verified, from study 
authors that they had chosen to contact. Consistent with the 
suggestion of narrative fallacy, inconsistent reasons were 
given for excluding studies. Only 14 of the 30 meta-
analyses in JAMA restricted their data to papers from peer-
reviewed journals. Five reviews provided incomplete 
criteria on inclusion and exclusion. Only 3 reported that 
they used pre-prepared selection criteria before gathering 
the data, which should have been an essential if inadequate 
requirement, as the reviewers were familiar with the data. 

Even pre-prepared data selection is not reassuring. If 
the authors knew the literature then, consciously or 
unconsciously, they could choose the selection criteria to 
achieve a desired result. Thus, they could have biased the 
criteria. Conversely, if they were not familiar with the 
literature, it might be argued that they should not be 
attempting the review. Authors of 25 of the meta-analyses 
could have chosen their criteria after the selection was 
made. Finally, in 19 of the reviews, the outcome measures 
were not identical from one study to another; the review 
was comparing apples with oranges [65]. All the meta-
analyses published in the Journal of the American Medical 
Association, in the period 2005 to 2006 were flawed, as 
summarised in Table 1.  

The Cochrane Foundation reviews also failed to meet 
minimum decision science requirements. Cochrane 

reviews included only a small fraction of the total available 
information.  

 
 
 

Table 1 Summary of major statistical errors in 
JAMA meta-analyses. 

 
JAMA meta-analyses examined (2005-2006) 
Total number 38 
Actual meta-analyses 30 
Number of studies considered 39,894 
Number of studies  selected 962 (2.4%) 
Independent selection 19 (63%) 
Inappropriate selection 30 (100%) 
Authors contacted 15 (50%) 
Used only peer reviewed studies 14 (47%) 
Additional unpublished data used 6 (20%) 
Selection criteria incompletely specified 5 (17%) 
Outcome measures invalid 19 (63%) 
Post hoc criteria possible 25 (83%) 

 
The Cochrane Foundation reviews also failed to meet 

minimum decision science requirements. Cochrane 
reviews included only a small fraction of the total available 
information. In Cochrane reviews, data selection is 
validated by suggesting that at least 2, preferably 
independent, people were expected to assess the eligibility 
of studies [66], using methods that are transparent, 
minimize bias and human error. They do not specify how 2 
people could be independent, minimize bias and reduce 
human error. Cochrane described at length the potential for 
errors that arise from non-blinding and lack of 
randomisation in the original clinical trials, but ignored the 
selection bias in their own reviews. 

We examined 100 reviews in the Cochrane archives, 
chosen by searching on the term “meta-analysis”. Five of 
the reviews were protocols or experimental designs. Of the 
remaining 95 reviews, only 3 had any blinding in selecting 
the clinical trials. The first of these 3 had some blinding of 
the results; however, the selectors examined the abstracts 
to determine eligibility [67]. The selectors had a summary 
of the trials, the results and the conclusions. Since the 
abstract summarises the paper, this approach would not 
prevent bias. The second of these 3 reviews was partially 
blinded to the names of authors, institution and funding 
sources. However, the selectors knew the study results 
[68]. In the third review, a third party removed the title, 
authors and results, but the review authors would 
presumably be competent in the field, familiar with the 
literature and the blinding ineffective [69]. Thus, selection 
bias could not be avoided, even in these 3 exceptional 
reviews, which had at least acknowledged the problem and 
tried to minimize the resulting error. Most of the reviews 
were completely deficient. The remaining 92 of the 95 
reviews had no blind study selection. In 90 reviews, both 
the names of the study authors and their conclusions were 
available for study selection. The full study text was used 
in study selection for 91 reviews. Additional non-peer 
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reviewed and unpublished material was included in 65 of 
the reviews. The reviews selected evidence based on 
published study quality and then included extra 
unpublished and unspecified data from preferred authors. 

Non-peer reviewed clinical trials were included in 67 
of the reviews. Furthermore, 6 reviews included 
unpublished results from unnamed “experts”. Only 7 
reviews made it explicit that the selection criteria were 
chosen before examining the data. Unconsciously or 
otherwise, 88 of 95 reviewers may have decided how to 
select the data after they knew the results. 

All of the 95 reviews had inadequate study selection. 
Only about half of the reviews (47) stated the numbers of 
studies considered. In these, a mere 1.1% of total clinical 
trials were selected. Finally, only 71 of the reviews 
measured the same outcomes. Once again, they were 
comparing apples with oranges: one trial might report a 
change in blood pressure, while another mentioned 
increased cholesterol. The results from Cochrane are 
summarized in Table 2. 
 
Table 2 Results from a brief analysis of 
Cochrane reviews in 2007 is presented here. 
None of the reviews were statistically sound. 

 
Cochrane Meta-analyses 
Total number 100 
Actual meta-analyses 95 
Any partial blinding at all in selection 3 (3%) 
No blinding in selection 92 (97%) 
Authors names used in selection 90 (95%) 
Full text used for selection 91 (96%) 
Used additional unpublished results  65 (68%) 
Used non peer reviewed trials 67 (70%) 
Opinion/data from “experts” used 6 (6%) 
Specific non post hoc criteria 7 (7%) 
Clearly defined outcome measures 71 (75%) 

Discussion and Conclusion 

A rational patient looking at the data from EBM clinical 
trials could conclude that they have little relevance to his 
or her medical treatment. The trials do not provide the 
necessary classification and prediction data necessary for 
treating an individual. EBM trials are subject to the 
ecological fallacy and larger trials provide less adequate 
data [2]. The multiple risk factors can produce over-
determined adaptive systems that over-fit the data and 
provide results that are deceptively robust, but inaccurate 
in the real world. EBM’s risk factor models also invite the 
curse of dimensionality. The assumption that EBM results 
provide useful predictive data for treatment or disease 
prevention appears not to be explicitly addressed within 
the paradigm. Perhaps most importantly, EBMs methods 
are not good regulators, as they model groups and 
populations, rather than the treatment of individual 
patients. Good modelling is essential for an effective 
methodology. 

 
EBM’s statistical methods are particularly unsuited to 

classification and prediction in clinical medicine. The 
results are not valid pattern recognition and should not be 
applied to the treatment of individual patients as each 
patient has dominating specific characteristics. The 
primary utility of EBM appears to be providing data for 
government and large organisations. Aggregate statistics 
are essential when determining the provision of medical 
resources to a large population in a city or country. EBM 
data could however be used as background information or 
provide an indication of prior probabilities in a Bayesian 
analysis. In addition, EBM data might provide information 
on disease incidence useful for a clinical test. In general, 
the benefits of EBM are peripheral to the central issues of 
classification and prediction in treating patients or 
preventing illness. 

Miller and Miller suggest that in promoting statistics-
based research, EBM has divorced itself from real-world 
common sense and scientific causation [70]. The rational 
patient approach described here reaches the same 
conclusion using largely cybernetic methods. Information 
theory, game theory, and the fundamentals of inductive 
systems provide another view of EBM. There is more to 
information and decision-making than the use of aggregate 
statistics and the selective evidence-base in EBM may be 
illusory [2]. 

Our simple analysis of the utility of normal statistics 
used for predicting actual patient benefit suggested that 
large trials are particularly inappropriate. In statistical 
terms, the larger the trial the smaller is the significant 
effect size. Large trials lack relevance to a rational patient. 
Since the 1970s, the increase in study size has made the 
results of clinical trials less important to evaluating the 
utility of a possible treatment. To compare current large 
trials to earlier results requires a non-linear reduction of the 
p-values to correct for sample size. From the viewpoint of 
a rational patient, a statistical power calculation is 
appropriate only when, pts, the chance of actual patient 
benefit is large and held constant. 

It would appear that current EBM methods are aimed 
at showing that a marginally effective drug provides a 
statistically significant benefit, when averaged over a large 
population. It is clearly easier to produce a slightly 
effective drug than a blockbuster and the costs and 
restrictions on large-scale trials help produce a monopoly 
for multinational companies. The increasing size of clinical 
trials could be covering the failure of EBM as a useful 
predictive or classification system for patients. Fortunately, 
we do not need to speculate. Stafford Beer, the 
management scientist, provided a cybernetic rule for 
evaluating systems and their behaviour, POSIWID or The 
Purpose of a System Is What It Does [71]. POSIWID is 
intended for systems in general and is rational unless the 
system is broken or malfunctioning. Beer suggested 
POSIWID to be the default cybernetic position unless a 
specific coherent and convincing explanation is 
forthcoming. In this case, POSIWID indicates that EBM is 
not intended to help rational patients. 

The problems we describe for meta-analysis are easily 
replicated or refuted, by direct perusal of published 
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reviews. In 2010, Shamliyan et al has reported similar 
statistical problems with meta-analysis reviews [72]. 
Despite the methodological limitations, meta-analyses 
have a place in providing some supporting data for a 
hypothesis, particularly for social medicine and large 
populations. However, they have limitations when 
compared with human reviews while retaining their 
inherent selectivity and subjectivity [2]. From the 
viewpoint of a rational patient, the primary concern is the 
position of meta-analyses or other systematic reviews, at 
the peak of the EBM evidence hierarchy. 

Direct decision science methods could provide a 
rational doctor-patient based approach. An early medical 
system MYCIN for suggesting antimicrobial treatment 
outperformed specialists [73] but was never used in 
practice. Doctors may have felt that their authority and 
autonomy were threatened by the technology. 
Alternatively, there was resistance to a machine making 
medical decisions. However, a medicine based on science, 
data and information would naturally place rational 
decision-making with the individual doctor-patient unit. In 
a scientific medicine, the individual doctor would have 
medical autonomy and the patient a rational choice. 
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